Multi-categorical classification using deep learning applied to the diagnosis of gastric cancer

Jonas Kloeckner; Tatiana K. Sansonowicz; Áttila L. Rodrigues; Tatiana W. N. Nunes
J. Bras. Patol. Med. Lab. 2020;56(1):1-8
DOI: 10.5935/1676-2444.20200013

ABSTRACT

INTRODUCTION: Pathologists currently face a substantial increase in workload and complexity of their diagnosis work on different types of cancer. This is due to the increased incidence and detection of neoplasms, associated with diagnostic subspecialization and the advent of personalized medicine. There are numerous treatments available for different types of cancer, and the diagnosis must be dispensed quickly and accurately for each case. Deep learning is a tool that has been used in daily life, including image detection, and there is growing interest in its application in Medicine and especially in Pathology, where it has a revolutionary potential.
OBJECTIVE: In this article, we present deep learning, in particular convolutional neural networks, as a potential technique for the analysis of digitized images of histopathological slides, detecting identifiable patterns in an automated manner, introducing the possibility of applying this technology as an auxiliary tool in the diagnosis of neoplasms, especially in gastric cancer, the object of this preliminary study.
METHOD: From a database of digitized images of histopathological slides representative of gastric cancer, we identified three morphological patterns of neoplasia, as well as non-neoplastic tissue patterns, with which we train a convolutional neural network algorithm, designed to identify and categorize similar images within these standards, in an automated manner.
RESULTS: The results of identification and automatic classification in the defined categories were satisfactory, with ROC curves above 0.9.
CONCLUSION: The results show the potential application of convolutional neural networks for digitized slides of gastric cancer, in accordance with international literature findings.

Keywords: neural networks (computer); gastric neoplasms; deep learning/machine learning model.

RESUMEN

INTRODUCCIÓN: Los patólogos enfrentan actualmente un aumento sustancial de su trabajo diagnóstico en diferentes tipos de cáncer. Eso ocurre debido al incremento de la incidencia y de la detección de neoplasias, además de la subespecialización diagnóstica y del advenimiento de la medicina personalizada. Hay numerosos tratamientos disponibles para diferentes tipos de cáncer, y el diagnóstico debe ser realizado con celeridad y precisión para cada caso. El aprendizaje profundo es una herramienta que ha sido empleada en el día a día, incluso en la detección de imágenes, y hay creciente interés en su aplicación en Medicina, especialmente en Patología, área en la que presenta potencial revolucionario.
OBJETIVO: En este artículo presentamos el aprendizaje profundo, en especial las redes neuronales convolucionales, como una técnica potencial para el análisis de imágenes digitalizadas de portaobjetos histopatológicos, detectando patrones identificables de forma automatizada, introduciendo la posibilidad de empleo de esa tecnología como herramienta auxiliar en el diagnóstico de neoplasias, principalmente en el adenocarcinoma gástrico, objeto de este estudio preliminar.
MÉTODOS: A partir de una base de datos de imágenes digitalizadas de portaobjetos histopatológicos representativos de adenocarcinoma gástrico, identificamos tres patrones morfológicos de la neoplasia, así como patrones de tejidos no neoplásicos, con los cuales entrenamos un algoritmo de red neuronal convolucional, creado para identificar y categorizar imágenes semejantes dentro de eses patrones, de modo automatizado.
RESULTADOS: Los resultados de identificación y clasificación automática en las categorías definidas se mostraron satisfactorios, con curvas ROC por encima de 0,9.
CONCLUSIÓN: Los resultados muestran el potencial de aplicación de las redes neuronales convolucionales en portaobjetos digitalizados de adenocarcinoma gástrico, en conformidad con la literatura internacional.

Palabras-clave: redes neurales/neuronales (computación); neoplasias gástricas; aprendizaje profundo/modelo de aprendizaje de máquinas.

RESUMO

INTRODUÇÃO: Os patologistas enfrentam atualmente um aumento substancial na carga e na complexidade de seu trabalho diagnóstico em diferentes tipos de câncer. Isso ocorre devido ao aumento da incidência e da detecção de neoplasias, além da subespecialização diagnóstica e do advento da medicina personalizada. Existem inúmeros tratamentos disponíveis para diferentes tipos de câncer, e o diagnóstico deve ser dado com celeridade e precisão para cada caso. A aprendizagem profunda é uma ferramenta que vem sendo empregada no dia a dia, inclusive na detecção de imagens, e há crescente interesse em sua aplicação na Medicina, especialmente na Patologia, área em que apresenta potencial revolucionário.
OBJETIVO: Neste artigo, apresentamos a aprendizagem profunda, em específico as redes neurais convolucionais, como uma potencial técnica para a análise de imagens digitalizadas de lâminas histopatológicas, detectando padrões identificáveis de forma automatizada, introduzindo a possibilidade de aplicação dessa tecnologia como ferramenta auxiliar no diagnóstico de neoplasias, principalmente no adenocarcinoma gástrico, objeto deste estudo preliminar.
MÉTODOS: A partir de um banco de dados de imagens digitalizadas de lâminas histopatológicas representativas de adenocarcinoma gástrico, identificamos três padrões morfológicos da neoplasia, bem como padrões de tecidos não neoplásicos, com os quais treinamos um algoritmo de rede neural convolucional, criado com a finalidade de identificar e categorizar imagens similares dentro desses padrões, de forma automatizada.
RESULTADOS: Os resultados de identificação e classificação automática nas categorias definidas mostraram-se satisfatórios, com curvas ROC acima de 0,9.
CONCLUSÃO: Os resultados evidenciam o potencial de aplicação das redes neurais convolucionais em lâminas digitalizadas de adenocarcinoma gástrico, consoantes com a literatura internacional.

Palavras-chave: redes neurais (computação); neoplasias gástricas; aprendizagem profunda/modelo de aprendizagem de máquina.